триангуляция - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

триангуляция - Übersetzung nach Englisch

СТРАНИЦА ЗНАЧЕНИЙ
Триангуляция (значения)

триангуляция         
f.
triangulation
triangulation         
  • Measuring the height of a building with an [[inclinometer]]
  • Finding the position of a distant object B with the angles observed from points A and C and the baseline b between them
DETERMINING THE LOCATION OF A POINT BY FORMING TRIANGLES TO IT FROM KNOWN POINTS
Triangulated; Triangulate; Triangulating; Radio triangulation; Triangulation in three dimensions
triangulation         
  • Measuring the height of a building with an [[inclinometer]]
  • Finding the position of a distant object B with the angles observed from points A and C and the baseline b between them
DETERMINING THE LOCATION OF A POINT BY FORMING TRIANGLES TO IT FROM KNOWN POINTS
Triangulated; Triangulate; Triangulating; Radio triangulation; Triangulation in three dimensions

Definition

Триангуляция
I Триангуля́ция (от лат. triangulum - треугольник)

один из методов создания сети опорных геодезических пунктов (См. Геодезический пункт) и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной Т. В прошлом вместо базисной стороны непосредственно измеряли короткую линию, называемую базисом, и от неё путём тригонометрических вычислений через особую сеть треугольников переходили к стороне треугольника Т. Эту сторону Т. обычно называют выходной стороной, а сеть треугольников, через которые она вычислена,- базисной сетью. В рядах или сетях Т. для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод Т. изобрёл и впервые применил В. Снеллиус в 1615-17 при прокладке ряда треугольников в Нидерландах для градусных измерений (См. Градусные измерения). Работы по применению метода Т. для топографических съёмок в дореволюционной России начались на рубеже 18-19 вв. К началу 20 в. метод Т. получил повсеместное распространение.

Т. имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Т. исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Т. подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Т. высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР, Канада, КНР, США и др.) Т. строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Т. применяется в СССР.

Государственная Т. в СССР делится на 4 класса (рис.). Государственная Т. СССР 1-го класса строится в виде рядов треугольников со сторонами 20-25 км, расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800-1000 км. Углы треугольников в этих рядах измеряют высокоточными Теодолитами, с погрешностью не более ± 0,7". В местах пересечения рядов Т. 1-го класса измеряют базисы при помощи мерных проволок (см. Базисный прибор), причём погрешность измерения базиса не превышает 1 : 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1 : 300 000. После изобретения высокоточных электрооптических Дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1 : 400 000. Пространства внутри полигонов Т. 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10-20 км, причём углы в них измеряют с той же точностью, как и в Т. 1-го класса. В сплошной сети Т. 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны в Т. 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ± 0,4", а также азимута с погрешностью около ± 0,5". Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов Т. 1-го класса через каждые примерно 100 км, а по некоторым особо выделенным рядам и значительно чаще.

На основе рядов и сетей Т. 1-го и 2-го классов определяют пункты Т. 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1 : 5000 один пункт Т. должен приходиться на каждые 20-30 км2. В Т. 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5" и 2,0".

В практике СССР допускается вместо Т. применять метод полигонометрии (См. Полигонометрия). При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников Т. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический). Пункты Т. в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов Т. определяют из математической обработки рядов или сетей Т. При этом реальную Землю заменяют некоторым Референц-эллипсоидом, на поверхность которого приводят результаты измерения углов и базисных сторон Т. В СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид). Построение Т. и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1-2, М., 1938-39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

Л. А. Изотов.

Рис. к ст. Триангуляция.

II Триангуля́ция (матем.)

разбиение поверхности на треугольники, вообще говоря, криволинейные. Например, если тетраэдр или октаэдр вписать в шар и спроектировать их поверхность на поверхность шара из его центра, то сфера (то есть поверхность шара) окажется разбитой соответственно на 4 и на 8 криволинейных треугольников, которые образуют Т. Обобщением понятия Т. поверхности является понятие многомерной Т. (n-мepной Т. n-мepного Полиэдра), совпадающее с понятием симплициального комплекса. Топологическое пространство называется триангулируемым, если оно гомеоморфно некоторому полиэдру. При любом топологическом отображении данного полиэдра на данное триангулируемое множество всякая Т. полиэдра переходит в Т. (криволинейную) множества. Триангулируемые множества иначе называются "криволинейными" полиэдрами.

Wikipedia

Триангуляция

Триангуляция (лат. triangulatio = покрытие треугольниками):

  • Триангуляция (архитектура) — способ пропорционирования здания (нахождения оптимальных отношений размеров целого и частей) на основе системы треугольников;
  • Триангуляция в геодезии — один из методов создания сети опорных геодезических пунктов и сама сеть;
  • Триангуляция в радиолокации и радиосвязи — один из методов радиопеленгации;
  • Триангуляция в военном деле — воинское формирование военных и гражданских чиновников Корпуса военных топографов, выполнявших съёмку конкретного участка местности, например целой губернии;
  • В математике:
    • Триангуляция (геометрия) — разбиение топологического пространства на симплексы;
    • Задача о триангуляции многоугольника — задача нахождения триангуляции многоугольника без дополнительных вершин;
    • Триангуляция Делоне;
  • Триангуляция (общественные науки) — измерение одного и того же показателя с помощью не менее чем трёх методов с целью независимого подтверждения результатов.
  • Триангуляция (психология) — метод манипуляции общением через промежуточного агента.
Beispiele aus Textkorpus für триангуляция
1. Что это, пардон, за губернатор, если он не знает, что такое, к примеру, триангуляция или солифлюкция?
Übersetzung von &#39триангуляция&#39 in Englisch